skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mukherjee, Bhramar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kutalik, Zoltán (Ed.)
    Epigenetic researchers often evaluate DNA methylation as a potential mediator of the effect of social/environmental exposures on a health outcome. Modern statistical methods for jointly evaluating many mediators have not been widely adopted. We compare seven methods for high-dimensional mediation analysis with continuous outcomes through both diverse simulations and analysis of DNAm data from a large multi-ethnic cohort in the United States, while providing an R package for their seamless implementation and adoption. Among the considered choices, the best-performing methods for detecting active mediators in simulations are the Bayesian sparse linear mixed model (BSLMM) and high-dimensional mediation analysis (HDMA); while the preferred methods for estimating the global mediation effect are high-dimensional linear mediation analysis (HILMA) and principal component mediation analysis (PCMA). We provide guidelines for epigenetic researchers on choosing the best method in practice and offer suggestions for future methodological development. 
    more » « less
  2. Abstract Mediation hypothesis testing for a large number of mediators is challenging due to the composite structure of the null hypothesis, (: effect of the exposure on the mediator after adjusting for confounders; : effect of the mediator on the outcome after adjusting for exposure and confounders). In this paper, we reviewed three classes of methods for large‐scale one at a time mediation hypothesis testing. These methods are commonly used for continuous outcomes and continuous mediators assuming there is no exposure‐mediator interaction so that the product has a causal interpretation as the indirect effect. The first class of methods ignores the impact of different structures under the composite null hypothesis, namely, (1) ; (2) ; and (3) . The second class of methods weights the reference distribution under each case of the null to form a mixture reference distribution. The third class constructs a composite test statistic using the threepvalues obtained under each case of the null so that the reference distribution of the composite statistic is approximately . In addition to these existing methods, we developed the Sobel‐comp method belonging to the second class, which uses a corrected mixture reference distribution for Sobel's test statistic. We performed extensive simulation studies to compare all six methods belonging to these three classes in terms of the false positive rates (FPRs) under the null hypothesis and the true positive rates under the alternative hypothesis. We found that the second class of methods which uses a mixture reference distribution could best maintain the FPRs at the nominal level under the null hypothesis and had the greatest true positive rates under the alternative hypothesis. We applied all methods to study the mediation mechanism of DNA methylation sites in the pathway from adult socioeconomic status to glycated hemoglobin level using data from the Multi‐Ethnic Study of Atherosclerosis (MESA). We provide guidelines for choosing the optimal mediation hypothesis testing method in practice and develop an R packagemedScanavailable on the CRAN for implementing all the six methods. 
    more » « less
  3. Abstract Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modelling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms. 
    more » « less
  4. Low socioeconomic status (SES) and living in a disadvantaged neighborhood are associated with poor cardiovascular health. Multiple lines of evidence have linked DNA methylation to both cardiovascular risk factors and social disadvantage indicators. However, limited research has investigated the role of DNA methylation in mediating the associations of individual- and neighborhood-level disadvantage with multiple cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We examined whether disadvantage at the individual level (childhood and adult SES) and neighborhood level (summary neighborhood SES as assessed by Census data and social environment as assessed by perceptions of aesthetic quality, safety, and social cohesion) were associated with 11 cardiovascular risk factors including measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we conducted epigenome-wide mediation analysis to identify methylation sites mediating the relationship between individual/neighborhood disadvantage and cardiovascular risk factors using the JT-Comp method that assesses sparse mediation effects under a composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking, medication use, and genetic principal components of ancestry, epigenetic mediation was detected for the associations of adult SES with body mass index (BMI), insulin, and high-density lipoprotein cholesterol (HDL-C), as well as for the association between neighborhood socioeconomic disadvantage and HDL-C at FDRq< 0.05. The 410 CpG mediators identified for the SES-BMI association were enriched for CpGs associated with gene expression (expression quantitative trait methylation loci, or eQTMs), and corresponding genes were enriched in antigen processing and presentation pathways. For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost significance after controlling for BMI. However, 43 methylation sites showed evidence of mediating the neighborhood socioeconomic disadvantage and HDL-C association after BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding genes were enriched in inflammatory and apoptotic pathways. Our findings support the hypothesis that DNA methylation acts as a mediator between individual- and neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the potential underlying epigenetic pathways. Future studies are needed to fully elucidate the biological mechanisms that link social disadvantage to poor cardiovascular health. 
    more » « less